

→ Steven Thanos Senior Environmental Engineer

Assessment of Ground Gas Sources using Oxygen to Nitrogen Ratios

2021 Australian Landfill and Transfer Stations Conference

9 June 2021

- Carbon Dioxide gas risks and impacts
- Importance to semi-quantitative risk assessment
- Natural sources and subsurface concentrations
- Differentiating between sources
- Oxygen to Nitrogen ratio theory
- Case study

GHD Carbon dioxide acute toxicity risks

Headaches and shortness of breath at 2% v/v q

Gorebridge development before and after knockdown

In contrast to methane, developments affected solely by carbon dioxide are not perceived as being immediately at risk. This is because even if a high concentration of carbon dioxide accumulates directly beneath a building, it does not pose an immediate risk to occupants, providing it is not allowed ingress.

- CIRIA Report 149

Modified Wilson and Card classification										
	Characteristic situation (CIRIA R149)	Comparable classification in DETR <i>et al</i> (1999)	Risk classification	Gas screening value (GSV) (CH ₄ or CO ₂) (I/hr) ¹ Threshold	Additional factors	Typical source of generation				
	1	A	Very low risk	<0.07	Typically methane £1 % and/or carbon dioxide £5 %. Otherwise consider increase to Situation 2	Natural soils with low organic content "Typical" made ground				
	2	В	Low risk	<0.7	Borehole air flow rate not to exceed 70l/hr. Otherwise consider increase to characteristic Situation 3	Natural soil, high peat/organic content. "Typical" made ground				
	3	с	Moderate risk	<3.5		Old landfill, inert waste, mineworking flooded				
	4	D	Moderate to high risk	<15	Quantitative risk assessment required to evaluate scope of protective measures.	Mineworking – susceptible to flooding, completed landfill (WMP 26B criteria)				
	5	E	High risk	<70		Mineworking unflooded inactive with shallow workings near surface				
	6	F	Very high risk	>70		Recent landfill site				

Wilson *et al* 2007

|--|

Source	Origin	Methane	Carbon dioxide	Other gases
		Typical concentration range (v/v)		
Soil	Physical, chemical and biological weathering	<2 ppm	350 ppm	-
Soil	Oxidation of organic matter		0–10%	-
Swamps and wetlands, waterlogged soils	Anaerobic microbial decay of organic material	10–90%	0–5%	Phosphine (PH ₃)
Coal measures strata	Coal seam gas	<1–90%	0–6%	-
Organic shales	Tightly held gas originating from both biogenic and thermogenic processes	60-90%	0-5%	Ethane, H ₂ S
Carbonate strata, including shelly sands	Dissolution of carbonates by acidic groundwater (e.g. due to oxidation of acid sulfate soils)		1–20%	-
Natural gas traps	Leakage	90–95%	2–8%	-
Granite	Radioactive decay of uranium	N/A	N/A	Radon typically <200 Bq/m³

NSW EPA 2020

GHD <u>Maximum</u> CO2 detections from "background bores"

GHD Methods to differentiate between gas sources

- Pre-landfilling/background bore
- Radioisotope analysis
- Isotopic fractionation
- VOC analysis for chlorinated hydrocarbons co-present with the suspected landfill gas.
- Ethane and/or butane content
- <u>The methane to carbon dioxide and oxygen to balance ratios can provide</u> <u>important information about the source of the gas.</u>
- Total organic carbon in soil analysis

- EPA Victoria Publication 1684

GHDOxygen to Nitrogen ratios

- Show what redox processes are taking place in the ground
- In natural soils, atmospheric gases are typically present at a ratio of 20.95% oxygen to 79% nitrogen (plus argon) unless oxygen consumed by oxidation reactions in ground gas
- Oxygen consumption common near actively gassing landfills
- Background bores can provide information on local ratios
- Ratios between true background and atmospheric gases (21:79 or 0.26) is indicative of background gas ratios. Less is indicative of methane (or other reduced gas) being oxidised
- Monitoring points can show no methane presence if oxidative processes take place faster than landfill gas generation plus migration processes.

<u>Line of evidence to support CSM – do not rely on in isolation</u>

GHD Example case study

- Proposed residential receptor 100 m from closed putrescible landfill unlined
- Landfill closed 20+ years
- High in-waste gas concentrations, low flow (< 1 L/hr)
- Surrounding geology clayey soils overlying gneiss
- 5+ years of monitoring data
- Landfill perimeter bores showing low CH4 (0 1% v/v), elevated CO2, decreased O2
- Receptor bores show no methane but *potentially elevated* (above natural) CO2
- Background/offsite bore shows CO2 typically <5% v/v, but some readings up to 7% v/v

GHD Oxygen:Nitrogen ratios: Pros and Cons

Pros

- Inexpensive if data is available
- Relatively quick and simple approach
- Trends in ratios can provide indication of extent of LFG migration from a source

Cons

- Requires understanding of "true background" concentration
- Variable geology/backfilling and groundwater in bores can affect results
- Without a robust CSM can be open to scrutiny e.g. are results representative of range of subsurface conditions, is the "background" ratio representative

SHOULD ONLY BE USED AS A TOOL TO COMPLEMENT A ROBUST CSM

BS 8485:2015+A1:2019, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings

EPA NSW 2020, Assessment and management of hazardous ground gases – Contaminated Land Guidelines

Card, G 1995, CIRIA Report 149 – Protecting Development from Methane

Law J, Watkins S & Alexander D 2010, *In-Flight Carbon Dioxide Exposures and Related Symptoms: Association, Susceptibility, and Operational Implications*, NASA/TP–2010–216126, NASA Centre for AeroSpace Information, Hanover, Maryland, USA.

Wilson S, Oliver S, Mallett H, Hutchings H, Card G 2007, CIRIA Publication C665, Assessing Risks Posed by Hazardous Ground Gases to Buildings

Wilson S, Collins F, Lavery R 2018, Using ternary plots for interpretation of ground gas monitoring results, Ambisense Limited and EPG Limited

***** Thank You

90+ years in operation 1354 countries served 200+ offices worldwide 2.3B AUD revenue 2020 5 goba markets 50+ service lines Providing engineering, environmental, advisory, architecture, digital and

advisory, architecture, digital an construction services